Sampling-Based Falsification and Verification of Controllers for Continuous Dynamic Systems
نویسندگان
چکیده
In this paper, we present a sampling-based verification algorithm for continuous dynamic systems with uncertainty due to adversaries, unmodeled disturbance inputs, unknown parameters, or initial conditions. The algorithm attempts to find inputs (and resulting trajectories) that falsify the specifications of the system thus providing examples of bad inputs to the system. The system is said to be verified if the algorithm cannot find falsifying inputs. The main contribution of the paper is the analysis of the effects of discretization of the state and input spaces that are inherent to sampling-based techniques. We derive conditions that guarantee resolution completeness. These provide sufficient, although conservative, conditions for verifying Lipschitz continuous (but possibly non smooth) dynamic systems without known analytical solutions. We analyze the effects of transformations of the input and state space on these conditions. The main results of this paper are illustrated with several simple examples.
منابع مشابه
Hybrid Systems: From Verification to Falsification
We propose HyDICE, Hybrid DIscrete Continuous Exploration, a multi-layered approach for hybrid-system testing that integrates continuous sampling-based robot motion planning with discrete searching. The discrete search uses the discrete transitions of the hybrid system and coarse-grained decompositions of the continuous state spaces or related projections to guide the motion planner during the ...
متن کاملDynamic Simulation and Control of a Continuous Bioreactor Based on Cell Population Balance Model
Saccharomyces cerevisiae (baker’s yeast) can exhibit sustained oscillations during the operation in a continuous bioreactor that adversely affects its stability and productivity. Because of heterogeneous nature of cell populations, the cell population balance equation (PBE) can be used to capture the dynamic behavior of such cultures. In this work, an unstructured-segregated model is used f...
متن کاملAdaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network
An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...
متن کاملA short overview of the electrical machines control based on Flatness-technique
Optimal linear controllers and high computational non-linear controllers are normally applied to control the nonlinear systems. Flatness control method is a control technique for linear systems as well as nonlinear systems by static and dynamic feedback namely as endogenous dynamic feedback. This method takes into account the non-linear behavior of the process while preventing complicated compu...
متن کاملRobust H2 switching gain-scheduled controller design for switched uncertain LPV systems
In this article, a new approach is proposed to design robust switching gain-scheduled dynamic output feedback control for switched uncertain continuous-time linear parameter varying (LPV) systems. The proposed robust switching gain-scheduled controllers are robustly designed so that the stability and H2-gain performance of the switched closed-loop uncertain LPV system can be guaranteed even und...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006